

BIOGEOMON 2017, Litomyšl

MERCURY IN THE CENTRAL EUROPEAN LAKE DISTRICT – PLEŠNÉ LAKE ECOSYSTEM

Tomáš Navrátil

with contribution of:

Tereza Nováková, Jan Rohovec, Šárka Matoušková, Michal Roll Jiří Kopáček, Jiří Kaňa, Pavel Cudlín

the Czech Republic, Central Europe

Isolines in the perimeter of the Czech Republic denote Hg forest humus concentrations in 1995 survey

Source: Suchara I, Sucharová J (2002) - Water, Air and Soil Pollution 136.

Plešné lake

- areas with >80% reduction of living spruce trees due to bark beetle outbreak during 2004–2008
- areas with damaged forest in 2000
- healthy forest

Source: Kopáček et al. (2017) STOTEN 584-585

Site in National Park area since 1991 no management activities allowed

General data - lake

oligotrophic lake elevation 1089 m a.s.l. glacial origin (> 14,000 yrs old) area 7.6 ha four tributaries

General data - catchment

bedrock	granite
max local relief	288 m
area	67 ha
vegetation	
* in year 2000	90% spruce forest
* in year 2013	93% area

lost 80% healthy

3

Plešné lake, bark beetle infestation

Forest insect infestations... why care?

• increased susceptibility of forests to insect damage due to climate change

Known effects...

• microclimate, hydrology and biogeochemical cycles become **severely** altered due to infestations

e.g.

- increased deposition of fresh organic matter
 - increased water infiltration
 - increased soil temperature
- reduction of soil mycorrhizal and microbial biota

Wet Hg deposition

Litterfall

- sampled twice a year in winter & summer
- 5 individual traps at each site
- 4 sites in total • 2 sites in infested areas, 1 site in healthy forest
 - 2 site at reference CT lake catchment

Litterfall composition 🗖 needle 📕 twig bark lichen ■ cone ■ other ■ leaves 6% 8% 9% 47% 2% 5% 23% **Average Hg concentrations** 76 µg/kg 85 122 233 32

170

42

Litterfall changes due to infestation

Litterfall Hg fluxes

• two data points per year

Soil

3 major surveys 2000, 2010 and 2015 (20 soil pits each)

General data – soil

leptosol, podsol, dystric cambisol 0.20 to 0.45 m deep

Soil Hg vs litterfall input

Stream water Hg and DOC

• four tributaries, sampled with approx. three weeks interval

Hg export to lake determined by DOC

Estimate of historical data on Hg in stream water...

Changes of inlet water quality

• deposition \Rightarrow soil \Rightarrow soil solution \Rightarrow stream solution

- increase in DOC \Rightarrow increase in soil moisture due to decreased evapotranspiration Hg
- should increase concurrently to DOC (assuming no changes of Hg/DOC after infestation)...

Conclusions

- infestation resulted in temporal 5-fold increase in litterfall Hg deposition flux
- Hg concentrations in O-horizons decreased due to decrease of Hg in the incoming litter material (occurring also at the reference site CT)
- Hg concentrations in A horizons increased concurrently with total carbon (TC) after infestation
- DOC tributary input to lake increased by ~30% due to infestation therefore Hg input to the lake increased concurrently

This study of mercury in forest ecosystem was supported by project GA16-14762S of the Czech Science Foundation and from the institutional resources of the Institute of Geology ASCR v.v.i. Long-term monitoring of Plešné lake ecosystem was supported by numerous projects of the Czech Science Foundation to researchers of Biology Center ASCR v.v.i.

